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Measurable functions are the generalization of measurable sets: those functions which are
well behaved with respect to a measure µ; in particular, a characteristic function χA will be
measurable iff A is measurable. Subject to some concerns with ∞, measurable functions are
those which we will be able to integrate.

The definition of a measurable function can seem somewhat unmotivated, but it can be
seen as a generalization of the notion of a continuous function. To that end, we recall the
following equivalent characterizations of continuity (adjusted to R∗):

PROPOSITION 13: Suppose that (X, d) is a metric space and f :X→R∗. Then
the following are equivalent:

(a) For any x ∈ X and � > 0 there is a δ > 0 such that, if d(x, y) < δ then d∗(f(x), f(y)) < �.

(b) Whenever xj→x in X, then f(xj)→f(x) in R∗.

(c) Whenever U ⊆ R∗ is open, then f−1(U) is open in X.

(d) For any a ∈ R, f−1([−∞, a)) and f−1((a,∞]) are open in X.
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We make a few simple remarks:

• It is more common to consider proposition 13 for real-valued functions, but the argu-
ments are the same for functions mapping into R∗, or indeed into any metric space. If
f :X→R is in fact real-valued, then we can also regard f as a function into R∗; it is
then easy to check that the continuity of a real-valued function is not affected by the
choice of range.

• (a), (b) and (c) are standard equivalences. The point of (d) is that we need only check
the inverse images of certain open sets to ensure that f is continuous. Also, (d) more
directly motivates the standard definition of measurable functions below.

• IfX is topological space then (c) becomes the definition of continuity. In the topological
setting, (a) and (b) do not really apply,1 but the equivalence of (c) and (d) still holds.

With proposition 13 as motivation, we now have

Definition: Suppose µ is measure on X and f : X → R∗. Then f is µ-measurable (or
measurable if the context is clear) if the set f−1([−∞, a)) is µ-measurable for all a ∈ R.

Though motivated by the concept of a continuous function, note that the definition does
not require X to be a topological space. We also make the following simple observations.

REMARKS

(a) It is not part of the definition that f−1((a,∞]) also be measurable, but this will follow
as a direct consequence of the measurability of f−1([−∞, a)) for all a. See lemma 14.

(b) A ⊆ X is µ-measurable iff χA is µ-measurable.

(c) Suppose that X is a topological space and that µ is a Borel measure on X. Then any
continuous f :X→R∗ is measurable.

(d) Suppose that f : X → R∗ and g : X → R∗, and let N = {x ∈ X : f(x) �= g(x)}. If
µ(N) = 0 then

f measurable ⇐⇒ g measurable .

In the context of (d), we say that f equals g almost everywhere, or a.e. for short. This then
defines an equivalence relation on functions:

f ≡ g ⇐⇒ f = g almost everywhere.

Similarly, we talk about a function f being defined almost everywhere. In such a case the
notion of f being measurable still makes sense, since the particular method of extending the
domain of f to all of X will not affect its measurability.

1
There is in fact a notion of convergent sequences for general topological spaces. However, this notion

does not in general capture the idea of continuity in the desired sense.
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Similar to measurability, if X is a topological space we have the notion of f : X → R∗

being Borel. To be precise, f is a Borel function if f−1([−∞, a)) is a Borel subset of X for
all a ∈ R.2 Note that, whereas a function f need only be defined a.e. to be measurable, for
f to be Borel it must be defined everywhere. We then have

• A ⊆ X is a Borel set iff χA is a Borel function.

• If f :X→R∗ is continuous then f is Borel.

• If f :X→R∗ is Borel and µ is a Borel measure on X, then f is µ-measurable.

• If f :R∗→R∗ is monotonic then f is Borel.

• An important example of a discontinuous Borel function f :R∗→R∗ is f(x) = 1
x . Here,

of course we define f(±∞) = 0; there is no natural definition for f(0), but however it
is defined, the resulting function is Borel.

As the above remarks indicate, there are many similarities between the collections of
measurable and Borel functions. This arises from the fact that both B and Mµ are σ-
algebras, the key to proving many of the interesting properties. It is illustrated by the
double-barrelled nature of the next two results.

LEMMA 14: Suppose X is a topological space (or a set with a measure µ). Let

f :X→R∗. Then the following are equivalent conditions for f to be Borel (measurable).

(a) f−1 ([−∞, a)) is Borel (measurable) for all a ∈ R.

(b) f−1 ([−∞, a]) is Borel (measurable) for all a ∈ R.

(c) f−1(U) is Borel (measurable) for all open U ⊆ R∗.

(d) f−1(B) is Borel (measurable) for all Borel B ⊆ R∗.

The point of this lemma is that, when proving a given function f is measurable, we have
a choice of the intervals upon which to focus (and there are other choices that we haven’t
indicated). Then, once we know that f is measurable, we are free to use the fact that many
inverse images are measurable.

2
Many texts will refer to such a function as being Borel measurable. However, since the notion of being

Borel is purely topological, it is confusing terminology, and we shall avoid it.
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PROPOSITION 15: Suppose X is a topological space (or a set with a measure µ).

(a) If f :X→R∗ is Borel (measurable) and φ :R∗→R∗ is Borel, then φ ◦ f :X→R∗ is Borel
(measurable).

(b) If f : X → R∗ is Borel (measurable) and c ∈ R∗, then cf, f 2, 1
f and |f | are Borel

(measurable), as long as the new functions are well-defined (well-defined a.e.).

(c) If f, g :X→R∗ are Borel (measurable) then so are f+g, f ·g, f
g
,max(f, g) and min(f, g),

as long as the new functions are well-defined (well-defined a.e.).

(d) Suppose {fj :X→R∗}∞j=1 is a sequence of Borel (measurable) functions. Then

(i) sup
j

fj and inf
j
fj are Borel (measurable).

(ii) If fj→f everywhere (almost everywhere) then f is Borel (measurable).

(iii)

�

j

fj is Borel (measurable) if it exists everywhere (almost everywhere).

(iv) lim sup
j→∞

fj and lim inf
j→∞

fj are Borel (measurable).

REMARK: We’ll prove this proposition in a moment, but we first want to note an asym-
metry in lemma 14(d) and proposition 15(a): even in the case where X has a measure, we
are considering only B Borel and φ Borel. The point is, though X may either be topological
or have a measure µ, on the range R∗ we’re always employing the topology: for general X,
there is no natural measure on R∗ to consider in lemma 14 or proposition 15. However, if
X = R∗ with Lebesgue measure then the questions become natural. Specifically:

• If f :R∗ →R∗ is Lebesgue measurable (or even continuous) and M ⊆ R∗ is Lebesgue
measurable, does it follow that f−1(M) is Lebesgue measurable?

• If f :R∗→R∗ is Lebesgue measurable (or even continuous) and φ :R∗→R∗ is Lebesgue
measurable does it follow that φ ◦ f is Lebesgue measurable?

The general answer in both cases is “No”. The easiest way to obtain counterexamples is
by employing what is known as the Cantor ternary function.3 This function allows us to
define a homeomorphism f : [0, 2]→ [0, 1] such that f(D) = C, where D is a compact set

with L (D) = 1, and C is the Cantor set. Now, by 18 , we know that D contains a non-
measurable set E; but setting F = f(E), we then know that F ⊆ C is measurable (since
C is null), with f−1(F ) = E nonmeasurable. Also, if we set φ = χF , then φ is measurable;
however, (φ ◦ f)−1((12 ,∞]) = E is nonmeasurable, implying f ◦ φ is nonmeasurable.

3
For more details see, for example, §19 of Measure Theory by Paul Halmos (Springer, 1974).
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PROOF OF PROPOSITION 15: We’ll phrase the arguments in terms of measurability,
ignoring null sets along the way. (For example, for (d) note that if each fj is defined except
on a null set Nj, then the appropriate limits can be defined except on the null set

�
Nj).

The arguments in the case that the functions are Borel are identical in form.

To prove (a), we note that for a ∈ R,

(φ ◦f)−1 ([−∞, a)) = {x : φ(f(x)) < α} = {x : f(x) ∈ φ−1([−∞, a))} = f−1
�
φ−1 ([−∞, a))

�
.

Now, φ being Borel implies that φ−1([−∞, a)) is Borel. Then, since f is measurable, it
follows from Lemma 14(d) that f−1 (φ−1([−∞, a))) is measurable. This is exactly what we
needed to show.

To prove (b), we now just apply (a) with the obvious choices for the Borel function g.

To prove (c), we first consider f + g. Fixing a ∈ R, we calculate

(f + g)−1 ([−∞, a)) = {x : f(x) < a− g(x)}

= {x : f(x) < q < a− g(x) for some q ∈ Q}

=
�

q∈Q

�
f−1([−∞, q)) ∩ g−1 ([−∞, a− q))

�

Since f and g are measurable, and since Mµ is a σ-algebra, it follows that (f+g)−1([−∞, a))
is measurable.

To prove fg is measurable, we first note that if f and g are real-valued then we can write
fg = 1

2 ((f + g)2 − f 2 − g2). The measurability of fg then follows. For general f and g, we
need to fiddle: we fix a ∈ R and we define

f̂(x) =

�
f(x) if f(x) and g(x) are finite

a+ 1 otherwise
ĝ(x) =

�
g(x) if f(x) and g(x) are finite

1 otherwise

It is easy to show that the real-valued functions f̂ and ĝ are measurable, and so f̂ ĝ is
measurable. We then note that fg < a exactly when either f̂ ĝ < a or fg = −∞, from which
the measurability of (fg)−1 ([−∞, a)) follows easily.

Next, f
g = f · 1

g is measurable. Finally for (c), the measurability of max(f, g) and min(f, g)
will follow as special cases of (d)(i).

To prove (d)(i), let u = sup
j

fj. Then

u−1 ([−∞, a]) = {x : fj(x) � a for all j ∈ N} =
∞�

j=1

f−1
j ([−∞, a]) .
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By Lemma 14(b), u is measurable. The measurability of l = inf
j
fj = − sup

j
(−fj) then

follows.

d(ii) will follow immediately from d(iv), and d(iii) will follow immediately from d(ii). Finally,
d(iv) follows easily from d(i) and the nature of lim sups and lim infs: applying the Thrilling
Inf-Sup Lemma,

lim sup
j→∞

fj = lim
j→∞

sup
n�j

fn = inf
j∈N

sup
n�j

fn ,

and similarly for the lim inf.

As a simple application of proposition 15, the partial derivatives of a Borel (measurable) f :
Rn→R will be Borel (measurable) as long as the derivatives are defined (almost everywhere).
Of course, the limit here is defined in terms of a real variable h → 0, but it is obviously
sufficient to consider h = 1

n for n ∈ N.

Finally, we want to consider semicontinuous functions on a metric space (X, d). To this
end, for x ∈ X and r > 0, let Br(x) be the open ball of radius r around x. Then, for
f :X→R∗ we define the upper envelope and lower envelope of f :






f(x) = lim
r→0+

sup
y∈Br(x)

f(y)

f(x) = lim
r→0+

inf
y∈Br(x)

f(y)

We say f is upper semicontinuous if f = f , and f is lower semicontinuous if f = f . The
intuition is that an upper semicontinuous function can jump up in the limit, but not down,
and vice versa for a lower semicontinuous function. With this in mind it is not hard to show
that a function f is continuous iff f is both lower semicontinuous and upper semicontinuous.
Our particular interest in semicontinuous functions is the following:

If X is a metric space and f : X → R∗, then f and f are Borel. Thus, upper

semicontinuous and lower semicontinuous functions are Borel.
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SOLUTIONS

(X, d) is a metric space, and f : X → R∗. We want to show the following are
equivalent:






(a) �− δ definition of continuity;

(b) sequence definition of continuity;

(c) f−1(U) is open for every open U ⊆ R∗;

(d) f−1([−∞, a)) and f−1((a,∞]) are open for every a ∈ R

∼ (b) =⇒∼ (a):

Suppose we have a sequence {xn} with xn→x but f(xn)�f(x). Then there is an � > 0
for which d∗(f(xn), f(x)) � � for infinitely many n. This shows that, for that �, there cannot
be a δ > 0 such that d(y, x) < � ⇒ d∗(f(y), f(x)): no matter how small δ is, there will be
one of the bad xn with d(xn, x) < δ.

∼ (c) =⇒∼ (b):

Suppose there is an open U such that f−1(U) is not open. Then some x ∈ f−1(U) is not
contained in an open ball B ⊆ f−1(U). So, there is a sequence {xn} ⊆∼f−1(U) with xn→x.
But then {f(xn)} ⊆∼U : since f(x) ∈ U is open, there is an open ball B�(f(x)) ⊆ U , and
thus it is impossible for f(xn)→f(x).

(c) =⇒ (a):

Fix x ∈ X and � > 0. Then U = {y : d∗(y, f(x)) < �} is open. So, by hypothesis, f−1(U)
is open. Obviously x ∈ f−1(U), and so there is a δ > 0 such that Bδ(x) ⊆ f−1(U). That is,

d(x, z) < δ =⇒ z ∈ Bδ(x) =⇒ z ∈ f−1(U) =⇒ f(z) ∈ U =⇒ d∗(f(z), f(x)) < � .

(c) =⇒ (d): Trivial.

(d) =⇒ (c):

For any a, b ∈ R, f−1((a, b)) = f−1([−∞, b)) ∩ f−1((a,∞]) is open, by hypothesis. Now
any open U ⊆ R∗ can be written U = ∪αIα as a union of open intervals in R∗. Then
f−1(U) = f−1(∪αIα) = ∪αf−1(Iα) is open.
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(i) If f : X → R∗ is measurable, then for any a ∈ R∗, f−1([a,∞]) =∼ f−1([−∞, a)) is
measurable. But then f−1((a,∞]) = f−1(∪n∈N[a + 1

n ,∞]) = ∪n∈Nf−1([a + 1
n ,∞]) is

also measurable.

(ii) If A ⊆ X then

χ−1
A ([−∞, a)) =






∅ a � 0 ,

∼A 0 < a � 1 ,

R a � 1 .

It follows immediately that χA is measurable iff A is measurable.

(iii) X is a topological space, µ is a Borel measure, and f :X → R∗ is continuous. Then
f−1([−∞, a)) is open, and thus Borel, and thus µ-measurable, for every a ∈ R. Thus
f is measurable.

(iv) For f, g :X→R∗, let
N = {x ∈ X : f(x) �= g(x)} .

Then, for any a ∈ R

f−1([−∞, a)) = g−1([−∞, a))∪{x : f(x) < a and g(x) � a} ∼ {x : f(x) � a and g(x) < a} .

The last two sets are subsets of N , and thus if N is null then these sets are also null
and thus measurable. Thus if g−1([−∞, a)) is measurable then so is f−1([−∞, a)). By
symmetry, the converse conclusion also holds.
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